Real-time intelligent pattern recognition algorithm for surface EMG signals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time intelligent pattern recognition algorithm for surface EMG signals

BACKGROUND Electromyography (EMG) is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG) can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling t...

متن کامل

Surface EMG pattern recognition for real-time control of a wrist exoskeleton

BACKGROUND Surface electromyography (sEMG) signals have been used in numerous studies for the classification of hand gestures and movements and successfully implemented in the position control of different prosthetic hands for amputees. sEMG could also potentially be used for controlling wearable devices which could assist persons with reduced muscle mass, such as those suffering from sarcopeni...

متن کامل

Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition

The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exerci...

متن کامل

Wavelet-based Denoising Algorithm for Robust Emg Pattern Recognition

A successful pre-processing stage based on wavelet denoising algorithm for electromyography (EMG) signal recognition is proposed. From the limitation of traditional universal wavelet denoising, the optimal weighted parameter is assigned for universal thresholding method. The optimal weight for increasing EMG recognition accuracy is 50–60% of traditional universal threshold with hard transformat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BioMedical Engineering OnLine

سال: 2007

ISSN: 1475-925X

DOI: 10.1186/1475-925x-6-45